

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1619–1622

First total synthesis of sterenins A, C and D

Tsuyoshi Shinozuka *, Yuko Yamamoto, Toru Hasegawa, Keiji Saito, Satoru Naito

Medicinal Chemistry Research Laboratories I, Daiichi Sankyo Co., Ltd, 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan

Received 12 December 2007; revised 26 December 2007; accepted 8 January 2008 Available online 11 January 2008

Abstract

The first total synthesis of sterenins A, C and D, potent inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), is described. The prenyl group was regioselectively introduced by a Claisen rearrangement, whereas the construction of an isoindolinone skeleton was accomplished by the lactamization of lactones assisted by a phenolic hydroxyl group. $© 2008 Elsevier Ltd. All rights reserved.$

Keywords: 11b-HSDs; Metabolic diseases; Sterenin; Isoindolinone; Claisen rearrangement

An excess of active glucocorticoids (GC) has been shown to be associated with metabolic diseases such as diabetes, dyslipidaemia, hypertension and metabolic syndrome. 11b-Hydroxysteroid dehydrogenase type 1 (11b-HSD1) is known as one of the main regulators of the intracellular GC level by converting inactive 11-ketoglucocorticoids to active 11b-hydroxyglucocorticoids, while a related enzyme, 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), catalyzes the reverse reaction.^{[1](#page-2-0)} Consequently, selective inhibitors of 11ß-HSD1 over 11ß-HSD2 have gained considerable attention as therapeutics for metabolic diseases, especially diabetes and metabolic syndrome, with the increasing social concern over obesity. $2,3$

Sterenins (1a–d, Table 1) were isolated from a solid-state culture of Stereum sp. SANK 21205 by our colleagues as the first natural products possessing potent 11β -HSD1 inhibitory activities.^{[4](#page-3-0)} Among them, sterenins A $(1a)$ and C (1c) possess significant levels of activity and showed IC₅₀ values 240 and 230 nM towards human 11 β -HSD1, respectively.[4](#page-3-0) Sterenins are not only potent competitive inhibitors of 11β -HSD1, but also show excellent selectivity over 11b-HSD2. As the limited supply of the natural products requires large scale solid-state fermentation, we carried Table 1

Inhibitory activities of sterenins (1) A–D towards human 11 β -HSDs

out total synthesis for the purpose of further biological evaluation. Herein, we wish to describe the first total synthesis of sterenins A, C and D.

The retrosynthetic analysis of sterenin (1) is outlined in [Figure 1](#page-1-0). Disconnection of the ester bond in 1 gives isoindolinone 2. The prenyl group of isoindolinone 2 could be introduced by a Claisen rearrangement. Therefore, aryl ether 3 was targeted as the inevitable precursor for placing the prenyl group at position 5 of the isoindolinone skeleton with certainty. Aldehyde 4 was thought to be a feasible compound at the earlier stage of this strategy.

Corresponding author. Tel.: +81 3 3492 3131; fax: +81 3 5436 8563. E-mail address: shinozuka.tsuyoshi.s5@daiichisankyo.co.jp (T. Shinozuka).

^{0040-4039/\$ -} see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.01.031

Fig. 1. Retrosynthetic analysis of sterenin (1).

As described in Scheme 1, sterenins C and D were synthesized via lactone 13. The synthesis was commenced with commercially available carboxylic acid 5, which was converted to amide 6. As the direct ortho lithiation of 6 (sec-BuLi, TMEDA, THF) caused decomposition, 5 halogen– metal exchange reactions were examined. After bromination of 6, treatment of bromide 7 with n-BuLi in THF followed by the addition of N , N -dimethylformamide (DMF) provided aldehyde 8 in 46% yield. The yield was improved to 66% when the solvent was changed to 1,2 dimethoxyethane (DME). The use of i -PrBu₂MgLi as the metalating agent^{[6](#page-3-0)} gave an excellent result, and aldehyde 8 was obtained in 91% yield. After cleavage of the benzyl groups by catalytic hydrogenation, selective protection of the 5-hydroxy group with a MOM group afforded ether 10. The structure of 10 was confirmed by ${}^{1}H$ NMR with the observation of a peak at 11.90 ppm, which indicated the existence of a hydrogen-bonded phenolic hydroxy group. Propargylation of 10 using 3-chloro-3-methylbut-1-yne in the presence of DBU and a catalytic amount of CuCl₂.2H₂O afforded propargylic ether 11 in 94% yield.⁷ Transformation of propargylic ether 11 into 5-prenylisoindolinone 14 was achieved via lactone 13, as reductive amination of aldehyde 10 or 11 with ammonia followed by thermal cyclization^{[8](#page-3-0)} led to unsatisfactory results. Propargylic ether 11 reduced under acidic conditions with $NaBH₃CN$ followed by cyclization resulted in the formation of lactone 12 in good yield. Reduction of the acetylenic moiety of 12 followed by a Claisen rearrangement in Nmethylpyrrolidone (NMP) provided 13 in excellent yield.⁹ Isoindolinone formation was then achieved in the presence of glycine tert-butyl ester under thermal conditions (neat, 120 °C) to generate isoindolinone 14d ($R = CH_2CO_2tert$ -Bu), while isoindolinone 14c $(R = H)$ was prepared by treating lactone 13 with ammonia in MeOH at 120° C in a sealed tube.^{[10](#page-3-0)} It is assumed that the isoindolinone formation proceeds via an o -quinone methide^{[11](#page-3-0)} by the fact that the reaction does not occur with compound 12 under the same reaction conditions and the general transformation from lactone to isoindolinone requires harsher condi-

Scheme 1. Synthesis of sterenins C (1c) and D (1d). Reagents and conditions: (a) Et_2NH HCl, WSC HCl, HOBt, Et_3N , CH_2Cl_2 , 99%; (b) NBS, MeCN, 99%; (c) i -PrBu₂MgLi, THF, -78 °C then DMF, 91%; (d) H₂, Pd/C, EtOH, 99%; (e) MOMCl, K_2CO_3 , 18-crown-6, acetone, 87%; (f) 3-chloro-3-methylbut-1-yne, $CuCl_2·2H_2O$, DBU, MeCN, 94%; (g) NaBH₃CN, MeOH, AcOH, reflux, 82%; (h) H₂, Lindlar catalyst, quinoline, EtOAc, 96%; (i) NMP, 80 °C, 92%; (j) NH₃, MeOH, 120 °C, 63% (14c); (k) glycine tert-butyl ester, $120 °C$, $88%$ (14d); (l) Ac₂O, pyridine, 93% (15c), 99% (15d); (m) CBr4, i-PrOH, reflux, 98% (16c), 84% (16d); (n) 2-hydroxy-4-(methoxymethoxy)-6-methylbenzoic acid (17), WSC-HCl, DMAP, CH_2Cl_2 , 60% (18c); (o) 17, DIPC, DMAP, CH_2Cl_2 , 82% (18d); (p) silica gel (Chromatorex, NH), 99% (19c), 98% (19d); (q) HCl, THF, H2O, 90% (1c); (r) HCl, 1,4-dioxane, 64% (1d).

tions.[10](#page-3-0) After protecting the phenolic hydroxy group as an acetate, the MOM group was removed under mild con-ditions to provide compounds 16c and 16d.^{[12](#page-3-0)} As products 16c and 16d were prone to cyclize to give benzopyran byproducts in the presence of acid, 13 the yield of 16 decreased when the reaction was run for a prolonged time. The following condensation of 16 with carboxylic acid $17¹⁴$ $17¹⁴$ $17¹⁴$ provided 18. The removal of the acetyl group was achieved by passing through a pad of basic silica gel (Chromatorex, NH, Fuji Silysia Ltd) to give 19 in quantitative yield. This deprotection method was superior to the method using K_2CO_3 in MeOH, as the latter method gave several

byproducts. Finally, removal of all the protecting groups of 19c and 19d under acidic conditions afforded sterenins C (1c) and D (1d), which were identical in all respects to natural sterenins (${}^{1}H$ and ${}^{13}C$ NMR, IR, HRMS).^{[4](#page-3-0)} Unlike compounds 16c and 16d, compounds 19c and 19d did not easily cyclize to give benzopyrans under these acidic conditions in spite of possessing a phenolic hydroxy group.

As described above, sterenins C and D were successfully synthesized in 16% and 20% overall yields, respectively. This route required several protection–deprotection sequences. Sterenin A (1a), one of the most potent compounds, was synthesized by a more direct approach, which involved a Claisen rearrangement of densely functionalized compound 26 as depicted in Scheme 2. The synthesis commenced with aldehyde 10 described in [Scheme 1.](#page-1-0) After conversion of aldehyde 10 to lactone 20 in excellent yield, lactam formation using amine 21^{15} 21^{15} 21^{15} provided isoindolinone 22 in 90% yield. The introduction of the propargyl group led to propargylic ether 23 in 78% yield using K_2CO_3 as a base, whereas the combination of $CuCl₂·2H₂O$ and DBU gave 23 in 56% yield.^{[7](#page-3-0)} After deprotection of the MOM group,[12](#page-3-0) reduction of the acetylenic moiety of

Scheme 2. Synthesis of sterenin A (1a). Reagents and conditions: (a) NaBH₃CN, THF, AcOH, 98%; (b) 2-{[tert-butyl(diphenyl)silyl]oxy}ethanamine (21), 120 °C, 90%; (c) 3-chloro-3-methylbut-1-yne, CuI, KI, K₂CO₃, acetone, reflux, 78%; (d) CBr₄, *i*-PrOH, reflux, 97%; (e) H₂, Lindlar catalyst, EtOH, 50 °C, 99%; (f) 17, DIPC, DMAP, CH₂Cl₂, 82%; (g) i -PrOH, reflux, 45%; (h) TBAF, THF; (i) HCl, MeOH, H₂O, reflux, 65% over two steps.

phenol 24 in the presence of Lindlar catalyst generated the corresponding olefin 25. Esterification of 25 with benzoic acid 17^{14} 17^{14} 17^{14} afforded ester 26 in 82% yield.

Then, the Claisen rearrangement of 26 was examined. Although it is known that polar solvents accelerate the rearrangement,¹⁶ the use of polar aprotic solvents like acetonitrile or 1,4-dioxane did not provide rearranged product 27 at all, whereas the reaction in NMP afforded a trace amount of 27 . To our delight, using *i*-PrOH as a solvent gave 27 in 45% yield. In this reaction, the isolated byproduct was isopropyl benzoate 28 .^{[17](#page-3-0)} Attempts to prevent this competitive alcoholysis were all unsuccessful. The use of more hindered t-BuOH led 27 in 38% yield. This reaction under microwave irradiation in i-PrOH gave isopropyl benzoate 28 in quantitative yield, while the addition of water to accelerate the reaction^{[16](#page-3-0)} led to the hydrolysis of 26.

Finally, the removal of the protecting groups furnished sterenin A (1a). Synthetic sterenin A was identical in all respects with the physical and spectroscopic data (¹H and 13 C NMR, IR, HRMS) as well as the biological activity determined for the natural product.^{[4](#page-3-0)}

In summary, the first total synthesis of sterenins A, C and D has been achieved. The prenyl group was efficiently introduced by a Claisen rearrangement. The construction of the isoindolinone skeleton was accomplished by the formylation of benzamide derivative using an ate complex, followed by lactonization and thermal lactamization assisted by a phenolic hydroxy group. We have synthesized 80 mg of sterenin A as the first batch, which will be used for further in vivo biological evaluation. This total synthesis also enables us to evaluate the potential of these isoindolinone-type compounds as lead compounds for the drug discovery of metabolic diseases, which will be reported elsewhere.

Acknowledgement

We would like to thank Dr. Toshio Takatsu (Daiichi Sankyo Co., Ltd) for providing us with the spectral data of natural sterenins.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at [doi:10.1016/j.tetlet.](http://dx.doi.org/10.1016/j.tetlet.2008.01.031) [2008.01.031.](http://dx.doi.org/10.1016/j.tetlet.2008.01.031)

References and notes

- 1. (a) Seckl, J. R.; Walker, B. R. Endocrinology 2001, 142, 1371–1376; (b) Seckl, J. R.; Walker, B. R. Trends Endocrinol. Metab. 2004, 15, 418–424.
- 2. Fotsch, C.; Askew, B. C.; Chen, J. C. Expert Opin. Ther. Pat. 2005, 15, 289–303.
- 3. Overexpression of 11β -HSD1 in mouse adipose tissue leads to metabolic syndrome, see: (a) Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N. H.; Mullins, J. J.; Seckl, J. R.; FlierScience, J. S. Science 2001, 294, 2166–2170; (b) Masuzaki, H.; Yamamoto, H.;

Kenyon, C. J.; Elmquist, J. K.; Morton, N. M.; Paterson, J. M.; Shinyama, H.; Sharp, M. G. F.; Fleming, S.; Mullins, J. J.; Seckl, J. R.; Flier, J. S. J. Clin. Invest. 2003, 112, 83–90.

- 4. (a) Aoyagi, A.; Ito-Kobayashi, M.; Tanaka, I.; Muramatsu, Y.; Umetani, M.; Takatsu, T. J. Antibiot., submitted for publication; (b) Aoyagi, A.; Tanaka, I.; Kobayashi, M. Jpn. Kokai Tokkyo Koho 291075, 2007.
- 5. 3,5-Bis(methoxy)-N,N-diethylbenzamide was metalated, see: (a) Watanabe, M.; Tsukazaki, M.; Hamada, Y.; Iwao, M.; Furukawa, S. Chem. Pharm. Bull. 1989, 37, 2948–2951; (b) Brimble, M. A.; Caprio, V.; Johnston, A. D.; Sidford, M. Synthesis 2001, 855–862.
- 6. Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 2001, 66, 4333–4339.
- 7. Godfrey, J. D., Jr.; Mueller, R. H.; Sedergran, T. C.; Soundararajan, N.; Colandrea, V. J. Tetrahedron Lett. 1994, 35, 6405–6408.
- 8. Cornella, I.; Kelly, T. R. J. Org. Chem. 2004, 69, 2191–2193.
- 9. Nicolaou, K. C.; Xu, H.; Wartmann, M. Angew. Chem., Int. Ed. 2005, 44, 756–761.
- 10. (a) Norman, M. H.; Kelley, J. L.; Hollingsworth, E. B. J. Med. Chem. 1993, 36, 3417–3423; (b) Norman, M. H.; Minick, D. J.; Rigdon, G. C. J. Med. Chem. 1996, 39, 149–157.
- 11. Loubinoux, B.; Miazimbakana, J.; Gerardin, P. Tetrahedron Lett. 1989, 30, 1939–1942.
- 12. Lee, A. S.; Hu, Y.-J.; Chu, S.-F. Tetrahedron 2001, 57, 2121– 2126.
- 13. (a) Fomum, Z. T.; Ayafor, J. F.; Mbafor, J. T.; Mbi, C. M. J. Chem. Soc., Perkin Trans. 1 1986, 33–37; (b) Crombie, L.; Crombie, W. L. J. Chem. Soc., Perkin Trans. 1 1982, 1455–1466; (c) Parmar, V. S.; Sharmaa, N. K.; Husaina, M.; Wattersonc, A. C.; Kumarc, J.; Samuelsonc, L. A.; Chollic, A. L.; Prasada, A. K.; Kumara, A.; Malhotraa, S.; Kumara, N.; Jhaa, A.; Singha, A.; Singha, I.; Himanshua Vatsa, A.; Shakila, N. A.; Trikhaa, S.; Mukherjeea, S.; Sharmaa, S. K.; Singha, S. K.; Kumara, A.; Jhad, H. N.; Olsene, C. E.; Stovef, C. P.; Brackef, M. E.; Mareel, M. M. Bioorg. Med. Chem. 2003, 11, 913–929.
- 14. Carboxylic acid 17 was prepared from commercially available ethyl 2,4-dihydroxy-6-methylbenzoate in two steps. See Supplementary data for detail.
- 15. Amine 21 was prepared from 2-aminoethanol. See Supplementary data for detail.
- 16. Castro, A. M. M. Chem. Rev. 2004, 104, 2939–3002.
- 17. Isopropyl 2-hydroxy-4-(methoxymethoxy)-6-methylbenzoate (28).